simpleflo

Documentation

Troubleshooting

Fix common setup, connector, and runtime issues.

Troubleshooting

Executive summary

This guide is for fast recovery when Conduit doesn't work. Debug from the outside in: system -> Conduit -> KB -> MCP -> AI client. Most issues are dependency, runtime, or index state problems rather than core logic bugs. For setup and basics, see /docs/install, /docs/quickstart, /docs/admin, and /docs/mcp.

Image

conduit-troubleshooting-flow | alt: Troubleshooting flowchart: Install -> Dependencies (Podman/Docker, Qdrant, FalkorDB) -> KB sync -> MCP server -> AI client config -> test query.

Before you start (2-minute reset)

  • Check your Conduit version: conduit --version.
  • Confirm container runtime installed: Podman preferred, Docker supported.
  • Confirm Qdrant reachable: conduit qdrant status.
  • If using KAG, confirm FalkorDB: conduit falkordb status.
  • Confirm Conduit is responsive: conduit status and conduit doctor.

If anything fails, fix the earlier step before moving on.

The debugging order (don't skip steps)

  1. Installation sanity

    • Good: conduit --version works and conduit status responds.
    • Failures: command not found, permission denied.
    • Next action: verify PATH, reinstall via the installer if needed.
  2. Runtime + DB dependencies

    • Good: Podman/Docker, Qdrant, and Ollama are running.
    • Failures: connection refused to Qdrant, container runtime errors.
    • Next action: conduit qdrant stop then conduit qdrant start; ensure runtime is running.
  3. Conduit configuration + state

    • Good: conduit doctor shows healthy checks.
    • Failures: daemon not running, socket missing.
    • Next action: conduit service start and re-check.
  4. KB ingestion + sync (RAG)

    • Good: conduit kb sync succeeds and conduit kb search returns results.
    • Failures: sync completes but search returns nothing.
    • Next action: verify sources with conduit kb list, re-sync, rebuild vectors if needed.
  5. Optional KAG build

    • Good: conduit kb kag-sync completes and conduit kb kag-status shows progress.
    • Failures: empty results, very slow extraction.
    • Next action: ensure KAG is enabled and dependencies are healthy; consider limiting scope with --source.
  6. MCP server artifact exists

    • Good: conduit mcp status shows MCP ready.
    • Failures: MCP not listed, client does not see tools.
    • Next action: re-run conduit mcp configure, verify config path with conduit client list.
  7. AI tool wiring + permissions

    • Good: client lists the MCP server.
    • Failures: server listed but tool calls fail.
    • Next action: check config path, restart client, verify PATH and env vars.
  8. Query test and interpretation

    • Good: tool returns snippets and citations.
    • Failures: irrelevant answers or empty results.
    • Next action: re-sync KB, validate source coverage, adjust queries.

Quick triage table (symptom -> likely cause -> fastest fix)

SymptomLikely causeFastest fix
conduit: command not foundPATH not setReopen shell or add install dir to PATH; re-run installer if needed.
Permission denied running ConduitBinary not executable or PATH points to wrong fileReinstall or fix permissions in install location.
Podman/Docker not runningRuntime not installed or daemon stoppedInstall Podman or Docker; start the runtime; rerun conduit deps status.
Qdrant connection refusedQdrant container stoppedconduit qdrant stop then conduit qdrant start.
FalkorDB not reachableFalkorDB container stoppedconduit falkordb stop then conduit falkordb start.
KB sync succeeds but search returns nothingSources not added or stale indexconduit kb list, then conduit kb sync --rebuild-vectors.
MCP server not found by clientWrong config path or not configuredconduit client list then conduit mcp configure.
MCP server listed but tool calls failConduit daemon down or dependencies missingconduit status, conduit doctor, check Qdrant/Ollama.
Answers are irrelevantRetrieval issue (query mismatch or stale index)Re-sync KB and try simpler query terms.
KAG build extremely slowLarge corpus or cold modelCheck conduit kb kag-status, run conduit ollama warmup, limit scope with --source.
High latency/timeoutsCold model or heavy semantic searchWarm up Ollama, keep queries short, use keyword search for quick checks.
Unexpected crashesEnvironment or dependency issueRun conduit doctor, collect logs, file issue.

Troubleshooting by layer

1) Installation & environment

  • Verify conduit --version and conduit status.
  • If the CLI is missing, reinstall with the installer script from the repo README.
  • Avoid deleting ~/.conduit/ unless you intend to lose local state.

2) Container runtime: Podman / Docker

  • Check dependency status: conduit deps status.
  • Podman is preferred for rootless isolation; Docker is supported.
  • If the runtime is down, start it and re-run conduit doctor.

3) Qdrant (RAG vectors)

  • Check: conduit qdrant status and conduit status.
  • If vectors are 0, rebuild: conduit kb sync --rebuild-vectors.
  • If Qdrant is stopped, restart it:
conduit qdrant stop
conduit qdrant start

4) FalkorDB (KAG graph, optional)

  • Only required for multi-hop graph traversal.
  • Check: conduit falkordb status.
  • Restart if needed:
conduit falkordb stop
conduit falkordb start
  • If you do not need KAG, keep it disabled and focus on RAG.
conduit kb list
conduit kb add <path>
conduit kb sync
conduit kb search "authentication"

If results are empty:

  • Verify the source path exists.
  • Re-sync with conduit kb sync --rebuild-vectors if semantic search is broken.

6) MCP integration layer

  • Check readiness: conduit mcp status.
  • Reconfigure client: conduit mcp configure.
  • Verify config paths: conduit client list.

See /docs/mcp for client wiring details.

7) AI client wiring issues

  • Confirm the MCP server entry exists in the client config file.
  • Restart the client after edits.
  • Run a minimal test prompt: "Search my KB for authentication and cite sources." If no results, go back to KB sync.

Performance & stability notes

  • Slow sync is usually document volume + embeddings. Start with a smaller dataset and expand.
  • KAG extraction is slower than vector indexing; it can take seconds per chunk depending on provider.
  • Cold starts can be slow; warming Ollama helps: conduit ollama warmup.

Known issues (curated)

IssueWho it affectsWorkaroundStatus/notes
Silent fallback to FTS5 when Qdrant fails (KB-001)Users on older versionsRestart Qdrant and rebuild vectorsMitigated in v0.1.42+
Container storage mount issues (KB-002)First-time installsRestart Qdrant/FalkorDB containersDocumented workaround

Known issues doc: https://github.com/amlandas/Conduit-AI-Intelligence-Hub/blob/main/docs/KNOWN_ISSUES.md

When to reset vs. when to reinstall

  • Reset vectors when semantic search is broken: conduit kb sync --rebuild-vectors.
  • Remove and re-add a source if only one source is problematic.
  • Reinstall the CLI only if the binary is corrupted or missing.
  • Avoid deleting ~/.conduit/ unless you intend to lose KB data.

How to report a bug (so maintainers can help quickly)

File issues here: https://github.com/amlandas/Conduit-AI-Intelligence-Hub/issues

Include:

  • OS and version
  • Conduit version (conduit --version)
  • Container runtime version
  • Qdrant/FalkorDB status
  • Commands run and exact errors
  • Logs from ~/.conduit/logs/ or ~/Library/Logs/conduit/
  • Minimal reproduction steps